If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98x^2+8x-30=0
a = 98; b = 8; c = -30;
Δ = b2-4ac
Δ = 82-4·98·(-30)
Δ = 11824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11824}=\sqrt{16*739}=\sqrt{16}*\sqrt{739}=4\sqrt{739}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{739}}{2*98}=\frac{-8-4\sqrt{739}}{196} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{739}}{2*98}=\frac{-8+4\sqrt{739}}{196} $
| 22=1/2h(2+9) | | 5x–8=32 | | x*x=2x*(x-2) | | 6m-2(1/2)=m+12(1/2) | | 3(2x-+4)=6(x-2) | | 22=1/2×h(2+9) | | (8-3x)-(3x+20)=12 | | 30-4x=2x | | 3=-2(x-1)+3x | | 2x+x=310 | | 3x+6+x=45 | | 5/7+2x=1/7 | | 6n+8=2(12+3n)-4 | | -1+n+7-7n=6-2n | | 8(x-7.7)=4.8 | | 2m/3-4=1/3(2m-12) | | 1/6v-7=3 | | 18/x=2.4/28 | | (a-300)+(a+50)=1,775 | | 4=3x+14/2 | | 3x–20=-2x | | 8/9-z/5=1/45 | | z-7/6=11/6 | | 5b-4(b-9)=2+2b | | −64x+4480=x−14 | | 52/x=4/1 | | -18y–-3y+-9=6 | | a+8a+(15+a)=85 | | −64x+4480=x+−14 | | 5x^2+60+180=0 | | -16x^2+80x+200=0 | | 38x+5=81 |